Chemistry 116 - Fall 2021 Dr. Audrey Dell Hammerich Discussion Worksheet - Week 14

1. Why does an acid-base titration curve (pH versus volume of titrant) have an abrupt change at the equivalence point?

2.	100 mL of 0.3750 M Ba(OH) ₂ is titrated with 0.4540 M HCLO ₄ . Determine the pH a) before any acid is added	[13.88]
	b) one mL before the equivalence point	[11.24]
	c) at the equivalence point	[7.00]
	d) one mL after the equivalence point	[2.77]
3.	100 mL of 0.150 M aqueous ammonia ($K_{\rm b} = 1.8 \times 10^{-5}$) is titrated with 0.100 M hydrochloric acid.	
	a) What is the pH before the titation begins?	[11.21]
	b) What is the pH at the half-equivalence point?	[9.25]
	c) What is the pH at the equivalence point?	[5.24]
	d) What is the pH when the titration is 1 mL past the equivalence point?	[3.4]

4. The acid HA has $pK_a = 7.00$. Which is the principal species, HA or A⁻ at a) pH 6.00, b) pH 8.00? What is the quotient [A⁻]/[HA] at c) pH 7.00, d) pH 6.00? [HA, A⁻, 1.0, 0.10]

5. The diprotic acid H₂A has $pK_{a1} = 4.00$ and $pK_{a2} = 8.00$. At what pH is a) [H₂A] = [HA⁻], b) [HA⁻] = [A²⁻]? Which is the principal species, [H₂A], [HA⁻], or [A²⁻] at c) pH 2.00, d) pH 6.00, e) 10.00?

[4.00, 8.00 H₂A, HA⁻, A²⁻]

6. The base B has $pK_b = 5.00$. a) What is the value of pK_a for BH⁺? b) At what pH is [BH⁺] = [B]? c) Which is the principal species, B or BH⁺, at pH 7.00? c) What is the quotient [B]/[BH⁺] at pH 12.00?

 $[9.00, 9.00, BH^+, 1.00 \times 10^3]$

7. What is the pH of 0.050 M NaHSO₃? For H₂SO₃
$$K_{a1} = 1.39 \times 10^{-2}$$
 and $K_{a2} = 6.73 \times 10^{-8}$ [4.51]

8. The dibasic compound B ($pK_{b1} = 4.00$, $pK_{b2} = 8.00$) was titrated with 1.00 M HCl. The initial solution of B was 0.100 M and had a volume of 100.0 mL. Find the pH at the following volumes of acid added:

a) 0 mL	[11.49]
b) 1 mL	[10.95]
c) 5 mL	
d) 9 mL	
e) 10 mL	[8.00]
f) 11 mL	[6.95]
g) 15 mL	
h) 19 mL	
i) 20 mL	[3.54]
j) 22 mL	[1.79]